Hamburger Beiträge zur Angewandten Mathematik A Priori Error Estimates for a Finite Element Discretization of Parabolic Optimization Problems with Pointwise Constraints in Time on Mean Values of the Gradient of the State

نویسندگان

  • Francesco Ludovici
  • Winnifried Wollner
  • FRANCESCO LUDOVICI
چکیده

This article is concerned with the discretization of parabolic optimization problems subject to pointwise in time constraints on mean values of the derivative of the state variable. Central component of the analysis are a priori error estimates for the dG(0)-cG(1) discretization of the parabolic partial differential equation (PDE) in the L∞(0, T ;H1 0 (Ω))-norm, together with corresponding estimates in L1(0, T ;H−1(Ω)) for the adjoint PDE. These results are then utilized to show convergence orders for the discrete approximation towards the solution of the parabolic optimization problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...

متن کامل

Hamburger Beiträge zur Angewandten Mathematik A Posteriori Error Representations for Elliptic Optimal Control Problems with Control and State Constraints

In this work we develop an adaptive algorithm for solving elliptic optimal control problems with simultaneously appearing state and control constraints. Building upon the concept proposed in [9] the algorithm applies a Moreau-Yosida regularization technique for handling state constraints. The state and co-state variables are discretized using continuous piecewise linear finite elements while a ...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints

In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error e...

متن کامل

Hamburger Beiträge zur Angewandten Mathematik Variational Discretization of Lavrentiev - Regularized State Constrained Elliptic Control Problems

In the present work, we apply a variational discretization proposed by the first author in [14] to Lavrentiev-regularized state constrained elliptic control problems. We extend the results of [18] and prove weak convergence of the adjoint states and multipliers of the regularized problems to their counterparts of the original problem. Further, we prove error estimates for finite element discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014